Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks
نویسندگان
چکیده
منابع مشابه
Multi-Speaker Localization Using Convolutional Neural Network Trained with Noise
The problem of multi-speaker localization is formulated as a multi-class multi-label classification problem, which is solved using a convolutional neural network (CNN) based source localization method. Utilizing the common assumption of disjoint speaker activities, we propose a novel method to train the CNN using synthesized noise signals. The proposed localization method is evaluated for two s...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Ensembles of genetically trained artificial neural networks for survival analysis
We have developed a prognostic index model for survival data based on an ensemble of artificial neural networks that optimizes directly on the concordance index. Approximations of the c-index are avoided with the use of a genetic algorithm, which does not require gradient information. The model is compared with Cox proportional hazards (COX) and three support vector machine (SVM) models by Van ...
متن کاملSea Level Anomaly Prediction using Recurrent Neural Networks
Sea level change, one of the most dire impacts of anthropogenic global warming, will affect a large amount of the world’s population. However, sea level change is not uniform in time and space, and the skill of conventional prediction methods is limited due to the ocean’s internal variability on timescales from weeks to decades. Here we study the potential of neural network methods which have b...
متن کاملMulti-system-multi-operator localization in PLMN using neural networks
Providing the localization algorithm for context-aware services is the focus of many studies. This paper explores the properties of positioning models based on received signal strength (RSS) in PLMN (Public Land Mobile Network) networks. The effects of using the RSS at a mobile terminal from various systems, such as GSM and UMTS, as well as from multiple operators, have been investigated and di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ETRI Journal
سال: 2005
ISSN: 1225-6463
DOI: 10.4218/etrij.05.0104.0087